标题
  • 标题
  • 作者
  • 关键词

一种基于图表示学习的潜在颠覆性技术识别方法

2023-06-24分类号:O157.5

【作者】窦永香  开庆  王佳敏  
【部门】西安电子科技大学经济与管理学院  
【摘要】识别潜在颠覆性技术有助于国家和企业加强颠覆性技术供给,使其在国际科技竞争中赢得竞争优势或实现变轨超车。传统基于文献计量的颠覆性技术识别方法通常利用论文和专利数据先构建关键词网络或关键词集,然后人工构造高阶数据特征进行分析。这种人工构造高阶特征的方法容易使关键词网络等的结构信息表达不充分,导致识别的准确性降低。本文提出一种基于图表示学习的半监督潜在颠覆性技术识别方法。首先,基于科技文献数据库数据,利用关键词共现频率和期刊影响力构建技术关键词加权网络;然后,通过反向传播算法基于匿名游走序列学习获得关键词网络的向量表示;接着,通过比较待识别技术关键词网络的向量序列与公认颠覆性技术关键词网络的向量序列之间的相似程度,反映技术演化特征的相似性,从而识别出潜在的颠覆性技术;最后,从近年来国内外与颠覆性技术有关的战略规划、预测报告中选取10项技术作为实验对象,采集WoS (Web of Science)数据对本文提出的方法进行实验验证,发现在预给定5项颠覆性技术的条件下,本文方法能较好地将其中潜在的3项颠覆性技术识别出来,并能够将2项伪颠覆性技术判断为非颠覆性技术。
【关键词】颠覆性技术识别  图嵌入  关键词网络  匿名游走
【基金】国家社会科学基金一般项目“融合多源异构数据的科研人员画像构建及其应用研究”(18BTQ089)
【所属期刊栏目】情报学报
文献传递