标题
  • 标题
  • 作者
  • 关键词

基于机器学习的短期电力负荷预测方法比较及改进研究

2023-01-10分类号:TM715;TP181

【作者】韩雅萱  石梦舒  黄元生  刘敦楠  段文军  
【部门】华北电力大学经济与管理学院  华北电力大学(保定)经济与管理系  北京信息科技大学经济管理学院  
【摘要】针对电力系统对短期电力负荷预测精确性的需求,以长短期记忆算法为基础,采用差分自适应进化算法对其进一步改进,从而提出一种基于机器学习的混合算法(SaDE-LSTM)对电力负荷进行短期预测。基于我国2004—2018年间月度社会用电负荷数据,对改进后的混合算法进行性能测试,首先利用差分进化算法的自适应变异和交叉因子来优化长短期记忆算法的初始参数,在此基础上,运用寻优得到的参数训练长短期记忆算法从而得到优化后的预测结果。为证明其优越性,对同组数据采用支持向量机(SVM)、反向传播神经网络、自回归积分滑动平均等算法分别预测。各方法预测结果和真实结果对比分析证明,SaDE-LSTM算法对时间序列数据量要求较低,同时相比其他传统算法有更高的预测精度。该改进算法能够为参与电力系统调度的虚拟电厂、负荷聚合商等对小样本和高精度预测有需求的主体提供参考。
【关键词】SaDE-LSTM算法  时间序列分析  电力负荷预测  长短期记忆循环神经网络  差分进化算法
【基金】国家社会科学基金重大项目“面向国家能源安全的智慧能源创新模式与政策协同机制研究”(19ZDA081)
【所属期刊栏目】科技管理研究
文献传递