标题
  • 标题
  • 作者
  • 关键词

基于改进SOLOv2的穴盘幼苗图像分割方法

2022-05-07分类号:S223.1;TP391.41

【作者】庄前伟  王志明  吴龙贻  李恺  王春辉  
【部门】南京理工大学机械工程学院  农业农村部规划设计研究院设施农业研究所  
【摘要】[目的]针对传统图像分割算法对穴盘幼苗图像分割精确度不高、分割效率低等问题,本研究提出一种基于改进SOLOv2的穴盘幼苗实例分割算法。[方法]在SOLOv2算法架构的基础上,设计拆分注意力网络(ResNeSt)和特征金字塔(feature pyramid networks,FPN)相融合作为主干提取网络,提取幼苗的特征信息;采集穴盘幼苗图像制作成数据集,引入多尺度变换和网格擦除等手段进行数据增强,并结合可变形卷积(DCNv2)优化网络结构,提升分割的精确度;引入秩和排序损失(RS Loss)解决类别分支和掩码分支任务中超参数调节存在非最优和耗时的问题,提高SOLOv2分割的性能和效率。[结果]基于采集多变机械手下抓取穴盘幼苗数据集的实验结果表明,改进SOLOv2分割算法的平均精度均值(mean average precision,mAP)、交并比0.5时平均精度AP50和交并比0.75时平均精度AP75分别为0.641、0.885和0.657,每张幼苗图像在GPU上的平均分割时间为0.114 s,比原SOLOv2的各项精度指标高出2.8%、3.1%和2.3%,分割时间减少了0.058 s。[结论]改进SOLOv2算法有更强的泛化性和鲁棒性,可以实现果蔬幼苗的实时高精度分割,并为幼苗品质分级筛选提供技术帮助。
【关键词】图像分割  穴盘幼苗  改进SOLOv2  分割精度  实时
【基金】国家重点研发计划资助项目(2020YFC1523002,2020YFC1522204,2021YFC1523500,2017YFD0701503)
【所属期刊栏目】南京农业大学学报
文献传递