基于稳健Cook距离的时间序列异常值诊断
2022-01-28分类号:O211.61
【部门】广东财经大学大数据与教育统计应用实验室 广东财经大学统计与数学学院 暨南大学管理学院
【摘要】Cook距离公式常用于回归模型的异常值诊断,但由于公式中的样本方差■对异常值敏感,导致公式缺乏稳健性,使得诊断效果不理想。基于以上问题,文章选取绝对离差中位数作为样本标准差的稳健估计量,得到了样本方差■的稳健估计量,进而构造出稳健Cook距离公式;借鉴传统Cook距离的回归模型异常值诊断理论,将稳健Cook距离公式应用于时间序列异常值诊断,拓展了传统Cook距离公式的异常值诊断领域。通过选取模拟样本量分别为50、100、200,污染率分别为0、1%、5%、10%的ARMA(1,1)序列及金融时间序列进行实例分析,结果发现:(1)在无污染时,稳健Cook距离法与常规Cook距离法的诊断正确率均为100%,两者没有出现“误诊”现象;(2)在样本量、污染率同时增大时,常规Cook距离诊断正确率急剧下降,当污染率达到5%及以上时,已基本无诊断力,而稳健Cook距离法依然能保持较高的诊断力。稳健Cook距离法不仅能应用于时间序列异常值诊断,也能应用于回归分析的异常值诊断。
【关键词】时间序列 异常值 稳健Cook距离
【基金】广东省普通高校特色创新类项目(2019KTSCX042)
【所属期刊栏目】统计与决策
文献传递