作物种植行自动检测研究现状与趋势
2021-07-01分类号:S126
【部门】中国科学院地理科学与资源研究所/资源与环境信息系统国家重点实验室 中国科学院大学
【摘要】大田作物一般成行种植,以提高种植效率和方便田间管理。因此,作物种植行自动检测对于智能农机携带传感器拍摄影像实现自主导航、精准打药,乃至基于无人机搭载传感器拍摄高分辨率影像生成田间的精准管理作业单元都具有重要意义,是智慧农业管理的重要组成部分。本研究首先系统归纳总结了已有作物种植行自动检测方法,分析了Hough变换法、最小二乘法、绿色像元累积法、Blob分析法、滤波法、消隐点法等作物种植行提取方法的基本原理、发展现状与优、缺点;其次,针对已有研究,提出目前还存在的、需要探讨的科学技术问题,比如不同空间和光谱分辨率影像如何影响作物种植行提取的精度;怎样基于无人机识别不同空间分布特征的作物种植行并进行长势空间精准制图;如何构建标准化的作物种植行识别技术流程等;最后,针对种植行提取技术现状与存在的问题,提出未来的若干研究方向,包括能适应高杂草压力等复杂环境的作物种植行精准识别技术,以提高智能农机自主导航精度;能基于种植行识别结果进行作物长势精准制图,从而支撑田间精准分区的方法;耦合无人机遥感精准作物长势监测与智能农机作业的田间精准管理技术等。本文可为影像中作物种植行自动提取及其相关应用研究提供参考。
【关键词】种植行 作物 自动检测 现状 趋势
【基金】国家自然科学基金(41871344);; 国家重点研发计划项目(2016YFD020060300,2016YFD020060304)
【所属期刊栏目】中国农业科学
文献传递