基于无人机多光谱遥感图像的玉米田间杂草识别
2020-04-16分类号:S513;S451;S127
【部门】山东理工大学农业工程与食品科学学院 山东理工大学国际精准农业航空应用技术研究中心 山东理工大学交通与车辆工程学院
【摘要】【目的】为了精确高效识别玉米田间杂草,减少除草剂施用,提高玉米种植管理精准性。【方法】通过六旋翼无人机搭载多光谱相机获取玉米田块多光谱图像。为分离图像中植被与非植被像元,计算了7种植被指数,采用最大类间方差法提取植被指数图像中非植被区域,制作掩膜文件并对多光谱图像掩膜。通过主成分分析对多光谱图像进行变换,保留信息量最多的前3个主成分波段。将试验区域分为训练区域和验证区域,在训练区域中分别选取了675处玉米和525处杂草样本对监督分类模型进行训练,在验证区域选取了240处玉米样本及160处杂草样本评价模型分类精度。将7种植被指数、3个主成分波段的24个纹理特征及经过滤波的10个反射率,共计41项特征作为样本特征参数。利用支持向量机-特征递归消除算法(support vector machines-feature recursive elimination,SVM-RFE)和Relief算法从41项特征中各筛选14项特征构成特征子集,采用支持向量机、K-最近邻、Cart决策树、随机森林和人工神经网络对特征子集进行监督分类。【结果】支持向量机与随机森林对全部特征及2个特征子集分类效果较好,支持向量机总体精度为89.13%—91.94%,Kappa>0.79,随机森林总体精度为89.27%—90.95%,Kappa>0.79。【结论】SVM-RFE算法对数据降维效果优于Relief算法,支持向量机(SVM)模型对区域冠层尺度下玉米与杂草的分类效果最好。
【关键词】杂草识别 无人机遥感 多光谱图像 特征选择 监督分类
【基金】山东省引进顶尖人才“一事一议”专项经费资助项目;; 中央引导地方科技发展专项资金“精准农业航空技术与装备研发”资助项目
【所属期刊栏目】中国农业科学
文献传递