药物表示学习研究进展
2019-10-29分类号:R914;TP181
【部门】清华大学电子工程系
【摘要】药物开发过程存在资本密度高、风险大、周期长的特点,需要投入大量的资金、人力与物力。传统的机器学习方法虽然可以在一定程度上辅助药物开发,但需要分子描述符作为特征输入,而不同的分子描述符的选择对机器学习模型的性能影响较大,因此传统的机器学习方法大多需要进行繁复、耗时的特征工程。近年新兴的深度学习方法,能够从药物的"原始"结构中直接提取特征,从而绕开特征工程,缩短开发周期。该文将现有的药物表示学习方法划分为2类:基于简化分子线性输入规范(SMILES)表达式的药物表示学习和基于分子图的药物表示学习,报告了这两类药物表示学习方法的最新研究进展,阐述了各种方法的创新点与局限性。最后,指出了当前药物表示学习研究中存在的重大挑战,并讨论了可能的解决方案。
【关键词】药物 表示学习 简化分子线性输入规范(SMILES) 分子图
【基金】国家重点研发计划(2018YFC0116800)
【所属期刊栏目】清华大学学报(自然科学版)
文献传递