基于多领域复杂网络拓扑结构的节点重要度评价方法
2019-07-15分类号:O157.5
【部门】西安交通大学软件学院社会智能与复杂数据处理实验室
【摘要】节点的重要度评价对复杂网络上节点的传播影响力具有重要的理论意义和应用价值,但传统的基于网络位置的方法并未考虑多维指标特征对网络节点重要度的影响,导致在大型网络的节点重要度评价中,一般节点的排序结果精度不高.为此在深入剖析经典的混合度分解算法以及传统重要性排序算法缺陷的基础上,结合网络节点的全局特征和局部特征对节点进行重要度影响分析,并将三度影响力原则融入节点的局部特征,提出一种适用于无向网络的基于多领域复杂网络拓扑结构下的节点重要度评价方法,即基于聚集系数和邻居特征的混合分解方法(CNMD).在社交网络、电子邮件网络、协作网络等10个领域数据集上的实验结果表明,相比于MDD、Eksd和MCDWE等算法,CNMD方法排序结果的分辨率分别达到了92.44%、99.99%、98.68%等,在10个领域数据集上的平均分辨率为98.73%,最高分辨率为99.99%,最低分辨率为92.44%,明显优于对比算法,可以更有效地应用于大型复杂网络中节点重要度的快速评价与计算.
【关键词】复杂网络 多领域 全局特征 局部特征 三度影响力
【基金】国家自然科学基金(61741208);; 教育部“云数融合科教创新”基金项目(2017B00030);; 中央高校基本科研业务费(ZDYF2017006);; 2018年中央高校建设世界一流大学(学科)和特色发展引导专项资金(PY3A022);; 2018年西安市碑林区科技项目(GX1803);; 2019年教育部社科重大项目(18JZD022);; 2019年深圳市科技创新项目(JCYJ20180306170836595)资助
【所属期刊栏目】中国科学技术大学学报
文献传递