基于word2vec和Attention-Seq2Seq的水稻病虫害智能问答方法研究
2019-06-15分类号:S435.11;TP391.12
【部门】沈阳农业大学信息与电气工程学院/辽宁省农业信息化工程技术研究中心
【摘要】为了提高水稻病虫害问答的准确性、快捷性和智能性,构建一种基于word2vec和注意力机制(Attention)优化的Seq2Seq问答模型。采用爬虫技术获取网络问答数据2万余条,经Jieba分词对数据进行分词处理,去除停用词无用符号等。同时,为提高模型的准确率,采用word2vec中的Skip-Gram模型将句子中的词语进行转换,得到具有语义等信息的词向量,并将经word2vec训练得到的词向量与加入了Attention(注意力机制)的Seq2Seq(Sequence to Sequence,序列到序列)模型进行问答模型训练。试验选取20000条水稻病虫害问答数据,按照随机选取方式,将数据按7/1/2进行训练、验证与测试。将本研究的问答模型与Seq2Seq模型和仅加入Attention机制的Seq2Seq模型进行对比分析,以BLEU评分标准与问答正确率为判断依据。试验结果表明:采用加入了word2vec与Attention机制的Seq2Seq问答模型相比其他两种模型,其模型的测试结果更为准确。该模型在BLEU评分和问答准确率上均高于其他两种模型,BLEU评分与问答正确率分别为33.58%和71%。比其他两种问答模型分别提高22.34%、9.51%和28%、14%。本研究构建的问答模型显著地提高了问答的准确率,能较好地解决农户在水稻种植生产过程中遇到的难题。
【关键词】水稻病虫害 word2vec 注意力机制 Seq2Seq 智能问答
【基金】国家重点研发计划项目(2018YFD0300309);; 沈阳市科技计划项目(17174300)
【所属期刊栏目】沈阳农业大学学报
文献传递