A Deep Learning Method for Chinese Singer Identification
2019-04-10分类号:TP391.3;TP18
【部门】the School of Information Science and Engineering Lanzhou University
【摘要】As a subfield of Multimedia Information Retrieval(MIR), Singer IDentification(SID) is still in the research phase. On one hand, SID cannot easily achieve high accuracy because the singing voice is difficult to model and always disturbed by the background instrumental music. On the other hand, the performance of conventional machine learning methods is limited by the scale of the training dataset. This study proposes a new deep learning approach based on Long Short-Term Memory(LSTM) and Mel-Frequency Cepstral Coefficient(MFCC) features to identify the singer of a song in large datasets. The results of this study indicate that LSTM can be used to build a representation of the relationships between different MFCC frames. The experimental results show that the proposed method achieves better accuracy for Chinese SID in the MIR-1 K dataset than the traditional approaches.
【关键词】singer identification timbre modeling deep learning long short-term memory
【基金】###################################
【所属期刊栏目】Tsinghua Science and Technology
文献传递