基于特征分解的知识网络结构关系提取
2019-04-05分类号:G252.7
【部门】东北师范大学信息科学与技术学院
【摘要】[目的/意义]对知识网络中结构关系的有效识别与提取,有助于从纷繁的数据中探测知识网络的拓扑结构及其演化模式。[方法/过程]本文提出一种基于邻接矩阵特征分解的知识网络结构关系提取方法。基于真实数据分别从静态结构关系提取和动态结构演化两个方面,对特征分解法和传统关联频度法进行对比分析,并与Pathfinder算法进行对比。对基于特征分解法提取知识网络结构关系的有效性进行验证。[结果/结论]研究结果表明:特征分解法能够识别原始知识网络中的主要成分信息,能够准确识别低频次的对网络整体拓扑结构较为重要的关联关系,且提取方法灵活自由。
【关键词】知识网络 特征网络 特征分解 结构关系
【基金】国家自然科学基金面上项目“基于网络结构演化的Folksonomy模式中社群知识组织与知识涌现研究”(项目编号:71473035)研究成果之一
【所属期刊栏目】图书情报工作
文献传递