标题
  • 标题
  • 作者
  • 关键词

基于Radarsat-2全极化数据的多种雷达植被指数差异分析

2019-03-25分类号:Q948;TN957.52

【作者】梅新  聂雯  刘俊怡  
【部门】湖北大学资源环境学院  武汉大学测绘遥感信息工程国家重点实验室  
【摘要】[目的]雷达植被指数(Radar Vegetation Index,RVI)作为评价雷达影像植被分布与生长状态的重要指标,对植被生长动态监测具有重要意义。然而,不同算法的雷达植被指数对于同一地物类型的表征往往存在一定的差异。文章通过对比分析3种常用RVI在多种类型地物上的差异,为其在SAR影像特征提取、分类、识别等应用提供指导性意见。[方法]实验基于武汉市Radarsat-2全极化数据,结合Google earth历史影像和实地调研数据,选取林地、灌丛、草地、耕地、水生植被、建筑、道路、裸地、湖泊、河流10种典型地物样本,从样本折线图分布、类内标准差等方面,对分别通过H/A/alpha分解、Freeman分解和后向散射系数计算得到的3种常用雷达植被指数Van_RVI、Freeman_RVI和Kim_RVI进行了测算分析。[结果] 3种雷达植被指数有着相似的折线图走势,对植被的监测能力良好,但对于不同地物的敏感性稍有差异:Freeman_RVI对林地等高密度植被区域敏感程度较高; Van_RVI对耕地与林地、灌木与林地具有一定的区分性; Kim_RVI对水体与建筑的敏感程度较高。[结论] Freeman_RVI对高密度植被识别能力最好,可用于林地提取、森林制图; Van_RVI对植被与非植被的区分能力最好,适用于植被提取; Kim_RVI数据预处理计算速度最快,但提取精度不高,可用于应急制图。
【关键词】Radarsat-2全极化数据  雷达植被指数  对比分析  Freeman-Durden分解  特征值  后向散射系数
【基金】国家重点研发计划项目“区域协同遥感监测与应急服务技术体系”(2016YFB0502600);; 湖北省自然科学基金“基于遥感和生长模型数据同化的湖北省农作物长势监测研究”(2012FFB00305)
【所属期刊栏目】中国农业资源与区划
文献传递