基于全卷积网络的葡萄病害叶片分割
2018-05-31分类号:TP183;TP391.41
【部门】甘肃农业大学机电工程学院
【摘要】[目的]本文旨在解决不同光照和复杂背景下葡萄病害叶片图像的自动分割。[方法]使用了一种全卷积网络(FCN)的葡萄病害叶片图像的自动分割算法。该算法在结构上将传统的卷积神经网络(CNN)后3个全连接层换成3个卷积层。通过多层的卷积,对输入葡萄叶片图像的特征进行提取;通过池化层,对特征信息进行筛选,缩减特征尺寸,以达到减少网络参数的目的。再通过反卷积对特征上采样,从高维、小尺寸特征恢复到图像原始尺寸,对具有原始尺寸的特征进行逐像素分类,确定原图像中每个像素位置的标签是背景还是前景。因只经过上采样处理后的分割图像会较粗糙,故通过跳跃结构将较为粗糙的原图进行局部信息与整体信息的整合,达到对分割结果进行精细化处理的目的。[结果]本算法对葡萄病害叶片有较好的分割效果,单叶片和复杂多叶片图像的马修斯相互系数(MCC)分别为0.821和0.747,MCC平均值较对比算法提高了6.5%。[结论]本算法能够较精确地分割自然条件下成像的葡萄病害叶片图像,为后续在叶片精准分割病害区域和提取病害特征创造了良好的条件。
【关键词】葡萄叶片 光照 复杂背景 卷积神经网络 全卷积网络 自动分割 病害
【基金】国家自然科学基金项目(61461005)
【所属期刊栏目】南京农业大学学报
文献传递