不同情绪对网络群体极化影响的实证研究——基于VAR模型
2017-12-21分类号:B842.6
【部门】中南大学商学院
【摘要】为了研究网络群体中不同情绪对群体极化的影响,本文从网络上已发生的群体极化现象出发,使用python抓取2016年8月17日到2016年10月8日期间的41496825条微博评论作为数据样本,并通过Stanford Word Segmenter进行文本分词,然后使用LIWC进行文本分析,进而结合群体极化的测量方法,建立VAR模型。研究发现:负向情绪比正向情绪更容易引起网络群体极化;相比于悲伤情绪和焦虑情绪,愤怒情绪更容易引起网络群体极化。最后,为企业处理公关危机以及政府应对舆论舆情等提供决策建议。
【关键词】情绪 网络群体极化 VAR模型
【基金】国家自然科学基金资助项目“SNS环境中消费者如何卷入网络团购:群体对个体影响的视角”(71272066)
【所属期刊栏目】商业经济研究
文献传递