标题
  • 标题
  • 作者
  • 关键词

基于小波分析的云计算在线业务异常负载检测方法

2017-05-15分类号:TP274;TP3

【作者】刘金钊  周悦芝  张尧学  
【部门】清华大学计算机科学与技术系  
【摘要】随着越来越多的在线业务被迁移到基于云的平台上,如何检测云平台上在线业务的异常运行状态成为了一个重要的问题。现有方法通过分析在线业务的实时负载数据来判断业务是否存在异常,在应对由程序异常或突发用户访问引起的异常负载时存在准确率低、误报率高的问题。该文提出并实现了一种面向云计算在线业务的异常负载检测方法。该方法利用小波分析技术,将原始负载数据分解成频率不同的多条曲线,并利用统计分析技术,通过检测各个频率上的异常增长或降低来判断负载是否存在异常。实验结果表明:同现有方法相比,该方法更准确,同时可以大大降低误报率
【关键词】云计算  异常负载检测  离散小波变换
【基金】国家国际科技合作专项项目(2013DFB10070)
【所属期刊栏目】清华大学学报(自然科学版)
文献传递