标题
  • 标题
  • 作者
  • 关键词

支持向量机在高考成绩预测分析中的应用

2017-01-15分类号:TP181

【作者】张莉  卢星凝  陆从林  王邦军  李凡长  
【部门】苏州大学计算机科学与技术学院  
【摘要】支持向量机作为一种机器学习算法因其良好的推广性和强大的非线性处理能力而令人瞩目.为此将支持向量机与国家高考的实际数据相结合,以具体高校的高考模拟考试成绩为主要训练数据,进行学生的高考成绩预测.实验考虑了三种情形.一是通过六次模拟考试的特征分来预测高考的特征分;二是通过六次模拟考试和高考的特征分来预测高考的录取批次;三是通过六次模拟考试的特征分和高考的预测特征分来预测高考的录取批次.通过与神经网络算法的比较,实验结果均表明了支持向量机方法的稳定性和良好的预测性.
【关键词】支持向量机  高考  预测  神经网络  机器学习
【基金】国家自然科学基金(61373093,61672364);; 江苏省自然科学基金(BK20140008);; 江苏省高校自然科学研究项目(13KJA520001);; 江苏省青蓝工程资助
【所属期刊栏目】中国科学技术大学学报
文献传递