标题
  • 标题
  • 作者
  • 关键词

面向LBSN的k-medoids聚类算法

2017-01-15分类号:TP311.13

【作者】罗维佳  乔少杰  韩楠  元昌安  闭应洲  舒红平  
【部门】西南交通大学信息科学与技术学院  成都信息工程大学信息安全工程学院  成都信息工程大学管理学院  广西师范学院科学计算与智能信息处理广西高校重点实验室  成都信息工程大学软件工程学院  
【摘要】常用的聚类算法存在诸多不足,为此提出了一种基于初始半径r的k-medoids改进算法,主要针对LBSN中的位置数据进行聚类,改善初始聚类中心敏感对聚类结果的影响,其本质是基于密度聚类,不同之处在于k值的选取是依赖于半径r.通过大量真实签到数据集进行实验,结果显示本文算法聚类结果更稳定.本文算法在基于位置的社交网络应用中获得更好的聚类效果和更快的收敛速度.实验中将距离平方和作为准则函数进行对比,相对于传统k-medoids算法优势明显,对退化的k-medoids算法也能够缩小1.2%到2%.
【关键词】社交网络  密度聚类  k-medoids  签到数据  距离相似度
【基金】国家自然科学基金(61100045,61165013,61363037);; 教育部人文社会科学研究规划基金(15YJAZH058);教育部人文社会科学研究青年基金(14YJCZH046);; 四川省教育厅资助科研项目(14ZB0458);; 成都市软科学项目(2015-RK00-00059-ZF);; 科学计算与智能信息处理广西高校重点实验室开放课题(GXSCIIP201407)资助
【所属期刊栏目】中国科学技术大学学报
文献传递